Category: New Developments

New Construction Boosts Visalia Industrial Park

With virtually no vacant space in the Visalia Industrial Park a spurt of new construction is underway that will make room for both new tenants, local company expansions and relocations in coming months.

If there are few empty buildings to lease, Visalia sports about 1,000 acres of land “zoned and ready to go,” according to Visalia economic development  manager staffer Devon Jones.

Developers looking to encourage companies who might want a location in the Central Valley are building several concrete tilt-up “spec buildings” in Visalia that can be ready for tenant improvements and occupancy in a matter of weeks.

Making new projects feasible, the city has a streamlined permitting process and lots are hooked up to sewer and water. In addition there has been a $130 million investment in roads over the past few years with easy access to Hwy 99 and the rest of California.

We are talking ’speedy delivery’ – not just for goods but for new buildings that will house future distribution and manufacturing hubs.

Visalia’s mid-state location makes it attractive for ground shipping of goods to the Western US, enabling parcels to arrive in one-day to many locations.

Hub Central
None other than United Parcel Service appears to be convinced, having invested in the purchase of 58 acres north Riggin at Plaza  earlier this summer. Sources says UPS plans a phased development to start with – a modular sorting center to replace its current small distribution center on Goshen Ave. Then, a 400,000 permanent complex will be next for UPS – said to be the big company’s future main hub in the Central Valley. Growth around its Fresno facility has boxed them in say real estate sources. Visalia’s ample industrial acreage is apparently the answer.

The land is the first parcel to sell in the Central Valley Logistics Center industrial park on the northwest corner of Plaza and Riggin since it was zoned for development a decade ago.

Screen Shot 2017-11-09 at 12.34.57 PM

 

Another big shipper is making Visalia its hub. Golden State Overnight (GSO) now owned by Britain’s Royal Mail, is building a 63,000sf distribution center at a cost of $2.3 million right now.Royal Mail bought GSO last year for $90 million.

 “If Memphis is the biggest hub for FedEx and Louisville is the main UPS hub  – Visalia is our most important hub for the future” says GSO’s McKinley.

The company has a smaller facility it leases now that has truck docks only on one side, says company VP Bob McKinley. The complex being built by Visalia based American Inc will offer triple the number of cargo doors on both sides with full automation on the conveyor system, he says.

The GSO hub will employ about 70 when it opens and likely double that in some years expects McKinley.

“If Memphis is a the biggest hub for FedEx and Louisville is the main UPS hub  – Visalia is our most important hub for the future” says GSO’s McKinley.

Speedy Construction

Perhaps the most active developer who has long recognized the need to offer new industrial space in Visalia ahead of demand  – is John Brelsford of Fresno who owns Diversified Development Group.

Last summer Brelsford broke ground on a fast-track construction project to build 3 clustered industrial buildings in a matter of weeks along Riggin near VF Corp, completing them – a total of 403,000sf – by late October of this year.

Commuters passing by each morning last month marveled at the rapid progress on construction each day.

Screen Shot 2017-11-09 at 12.39.53 PM

While Mr Brelsford says he can’t reveal prospective tenants he is working with International Paper, who a has major paper cup manufacturing plant here, will use the most northerly building, a 140,000sf space according to the City of Visalia who received tenant improvement plans in recent days.

“They are about ready to move in” says city planner Jason Huckleberry.

A second space is close to being filled as well says Mr Brelsford.

Next Phase Coming 

Because interest has been so brisk Brelsford is not waiting to build more “spec” space. He says he expects to build about 800,000sf beginning next March on 33 acres he owns on the southeast corner of Plaza and Riggin, a few blocks from his other project.

Last year Brelsford acquired another big parcel at Plaza and Riggin – 150 acres from Doe family – now fully entitled and in the city limits at the northwest corner of this same key intersection.The spot is just 1.5 miles from the new Betty Drive interchange on Hwy 99 that is expected to be complete in a few months.

If newcomers make the news, expansion of existing industrial park tenants are the bread and butter of Visalia’s economy.

While some worry that many new distribution companies looking here take larger spaces of source but actually have few employees. But some are both big on their space needs and offer lots of jobs

Consider VF Corp, the international clothing maker, who has a million square foot distribution center on Plaza Drive. VF, maker of Wrangler, Lee Jeans and NorthFace outdoor clothing, employs up to 1,100 people and most of them live within a 10-15-mile radius from the facility says the company.VF has recently completed a $3 million upgrade to their facility and plans more in 2018.

Another industrial park tenant that continues to grow larger is Perfection Pet Foods, a division of  Western Milling, based in Goshen. The pet food maker is building a $6.2 million office and warehouse right now. Owner Kevin Kruse says they are replacing a 100,000sf warehouse a few miles away.”We wont have to move our products across town” from their manufacturing plant, he figures. The new warehouse will house products ready to ship to Walmart and other large customers. Perfection Pet Foods employs about 120  at their growing campus of buildings in the northwest part of the industrial park.

As interest in new buildings grow, the vacated space makes room for others who will likely gobble up this 100,000sf left by the pet food company, for example.

Meanwhile smaller players like local developer Danny Freitas says his various Visalia industrial park spaces are all spoken for and he will now build two new 40,000sf “spec” warehouses for lease, one on Kelsey and one on Sunnyview.

Also in the industrial park, Servall, the big appliance parts and repair company says they will open their new sales and distribution center in Visalia in December 2017 at 2247 N. Plaza Dr., Suite D, in am existing 35,000 sf building – one of the few vacant spots in the Mid-State 99 complex.

The company cited their ability to do one-day shipping of appliance parts to consumers and businesses throughout all of California.The business will employ 20.

Speedy Delivery 

 

Naval Air Station Lemoore gets first F-35c Fighter Jets

January 27

 

 

Four Navy F-35C Lightening II fighters arrived at Naval Air Station LeMoore, California on Jan. 25 in what naval aviation officials are calling a huge step in the evolution of Lemoore as the Navy’s first Joint Strike Fighter Base.

It’s a major step in the Navy’s journey to get the Joint Strike Fighter into carrier air wings, currently slated to happen in February 2019.

This is the first delivery of the aircraft carrier variant JSF stealth fighter not only to the base, but to the “Rough Raiders” of Strike Fighter Squadron 125. The squadron was reactivated at Lemoore on Jan. 12 to be the West Coast JSF fleet replacement squadron.

LEMOORE, Calif. (Jan. 25, 2017) Vice Adm. Mike Shoemaker, commander of Naval Air Forces, speaking at the arrival of the first four JSF F-35C fighters at NAS Lemoore called the JSF “game-changing technology for naval carrier air wings.

Photo Credit: MC3 Zachary Eshleman/Navy

“This is truly game changing technology and, no kidding, what it takes to win the future high end fight,” Shoemaker said.

Still, naval aviation officials say the airframe is a critical cog in the Navy’s air wing of the future. The Navy is transitioning to include the Boeing F/A-18E/F Super Hornet fighters and their sister aircraft, the EA-18G Growlers electronic attack aircraft.

The high-tech wing is rounded out by the Northrop Grumman E-2D Hawkeye multi-mission surveillance aircraft and Sikorsky MH-60R/S Seahawk helicopters and then next generation of the Carrier Onboard Delivery aircraft, now expected to be a variant of the Boeing V-22 Osprey.

“The initial plan is for VFA-125 and the first 7 operational F-35C squadrons to be based out of NAS Lemoore,” said Cmdr. Jeannie Groeneveld, spokeswoman for Naval Air Forces in San Diego.

The original plan had the Navy’s first JSF unit — the “Grim Reapers” of Strike Fighter Squadron 101, currently based at Eglin Air Force Base in the Florida Panhandle, to move to Lemoore this month.

Instead, the Navy opted to stand up VFA-125 at Lemoore as a separate West Coast squadron instead. Groeneveld told Navy Times that no decision has been made on any future JSF home bases, including on the East Coast.

For now, VFA-101 will stay in Eglin and also train pilots and enlisted maintainers as the service begins to transition squadrons into the new stealth jet.

“There is no plan in the foreseeable future for VFA-101 to be stood down,” Groeneveld said. “The requirement is for two FRS while we are transitioning squadrons. Both will be capable of instructing the same syllabus to include new accession pilots and transitioning aircrew.”

Navy’s leadership considers Lemoore an ideal place to train pilots and aircrews. There’s easy access to training ranges in Nevada and it’s a short hop out to carriers operating off the West Coast from San Diego as well as Washington State.

“We enjoy basically unencroached airspace in Lemoore to practice here as we do at sea,” said Capt. David James, commanding officer of NAS Lemoore.

Lemoore, is expected to add more personnel and F-35C squadrons over the coming years. In the past year, the service relocated the “Knighthawks” of Strike Fighter Squadron 136 from Naval Air Station, Oceana in Virginia to the base.

141104-N-ZZ999-012 PACIFIC OCEAN (Nov. 4, 2014) Two F-35C Lightning II carrier variant joint strike fighters conduct the first catapult launches aboard the aircraft carrier USS Nimitz (CVN 68). The F-35 Lightning II Pax River Integrated Test Force from Air Test and Evaluation Squadron (VX) 23 is conducting initial at-sea trials aboard Nimitz. (U.S. Navy photo courtesy of Lockheed Martin by Dane Wiedmann/Released)
141104-N-ZZ999-012 PACIFIC OCEAN (Nov. 4, 2014) Two F-35C Lightning II carrier variant joint strike fighters conduct the first catapult launches aboard the aircraft carrier USS Nimitz (CVN 68). The F-35 Lightning II Pax River Integrated Test Force from Air Test and Evaluation Squadron (VX) 23 is conducting initial at-sea trials aboard Nimitz. (U.S. Navy photo courtesy of Lockheed Martin by Dane Wiedmann/Released)

Two F-35C Lightning II stealth fighters set up for the catapult launchers as part of the aircraft’s first sea trials aboard the aircraft carrier Nimitz.

Photo Credit: Dane Wiedmann, Navy

 

Wonderful Spec Project Underway in Central Valley

The 1 million-square-foot building, which will sit within the 1,600-acre Wonderful Industrial Park in Shafter, Calif., is one of only a few developments of its kind in the market.
4100 Express Ave., Shafter, Calif.
4100 Express Ave. in Shafter, Calif.

The call for premier industrial space in California’s Central Valley is growing louder, and Wonderful Real Estate, formerly Roll Real Estate, is responding with a new project. The company is in the midst of developing a 1 million-square-foot speculative industrial property in Shafter, Calif., roughly 130 miles north of Los Angeles and 100 miles south of Fresno in the Central Valley.

It’s the right time and the right place. “Strengthening market fundamentals, growth of e-commerce and awareness of the Central Valley industrial market has given us the confidence to go spec,” Joe Vargas, president of Wonderful Real Estate Development, said in a prepared statement. WRE is constructing the new building at 4100 Express Ave., within the company’s 1,600-acre, rail-served Wonderful Industrial Park. The project holds the distinction of being one of just a few million-square-foot-plus spec industrial developments currently underway with 40-foot clear height, oversized large truck courts and access to four major U.S. Ports (Los Angeles, Long Beach, Hueneme and Oakland).

4100 Express’s location will provide users with even more than cutting-edge accommodations and coveted transportation infrastructure; it will also offer access to an ample pool of labor that is both qualified and committed. WRE notes that existing tenants at Wonderful Industrial Park consistently record annual labor turnover rates in the low single-digit range.

Central Valley takes center stage

Solid positive net absorption and strong rental growth have characterized the Central Valley industrial market for the last two years, according to a second quarter report by commercial real estate services firm JLL, which spearheads leasing activity at Wonderful Industrial Park. And even in the face of new development, the vacancy rate remains a respectable 5.3 percent and is expected to head downward. There’s something about the Central Valley.

“Demand is coming from primarily big-box users looking to capitalize on real estate costs and outbound distribution. Between super-regional distribution plays and e-commerce distribution the Central Valley is cementing itself as a Tier 1 distribution market within the Southwest U.S.,” Mac Hewett, vice president with JLL, told Commercial Property Executive.

WRE expects 4100 Express to be ready to welcome its first tenants in March 2018.

Image courtesy of Wonderful Real Estate

https://www.cpexecutive.com/post/wonderful-spec-project-underway-in-central-valley/

 

Sungrow Wins 205MW Utility-Scale Project Deal in California’s Central Valley

Newswire.ca
FREMONT, Calif.
Sept. 4, 2017
By Jade Luo

Sungrow, the global leading PV inverter system solution supplier, announced that it would supply 205MW of central inverters for a utility-scale solar project in California’s Central Valley.

The Central Valley is home to many of California’s solar farms because of its abundant land space and frequent sunshine. It experiences high temperatures in the summer months, putting significant wear-and-tear on solar hardware. The power plant is expected to be completed in late 2017 using Sungrow’s newest 1500V turnkey central inverter solution, the SG2500U.

The product is designed for easy integration–with a containerized pre-integrated option also available–and simplified installation making it the ideal plug and play solution for utility-scale systems. For O&M, all serviceable components can be accessed externally, meaning lower repair times and service costs. In addition, the product is one of the first 1500V inverters be listed with the stringent UL 1741-SA certification required for most North American projects.

“Sungrow is always committed to technical innovation which drives our rapid growth. We will continue to offer better products and solutions to customers globally”, said Professor Renxian Cao.

The project signifies Sungrow’s rapid growth into North America, being the company’s largest project win in the continent since it entered the market in 2011. Earlier this year, the company announced it shipped an unprecedented 10.9 GW in the first half of 2017, moving up from its already impressive 11.1GW number for 2016.

About Sungrow

Sungrow is a global leading inverter solution supplier for renewables with over 49GW installed worldwide as of June 2017. Founded in 1997 by University Professor Renxian Cao, Sungrow is a global leader in research and development in solar inverters, with numerous patents and a broad product portfolio offering PV inverter systems as well as energy storage systems for utility-scale, commercial, and residential applications. With a 20-year track record of growth and success, Sungrow’s products are available in over 50 countries, maintaining a market share of around 25% in Germany and over 15% globally. Learn more about Sungrow by visiting: http://www.sungrowpower.com

View original content with multimedia:http://www.prnewswire.com/news-releases/sungrow-wins-205mw-utility-scale-project-deal-in-californias-central-valley-300513426.html

SOURCE SUNGROW Power Supply Co., Ltd

Inside Waymo’s Secret World for Training Self-Driving Cars


by ALEXIS C. MADRIGAL
The Atlantic

In a corner of Alphabet’s campus, there is a team working on a piece of software that may be the key to self-driving cars. No journalist has ever seen it in action until now. They call it Carcraft, after the popular game World of Warcraft.

The software’s creator, a shaggy-haired, baby-faced young engineer named James Stout, is sitting next to me in the headphones-on quiet of the open-plan office. On the screen is a virtual representation of a roundabout. To human eyes, it is not much to look at: a simple line drawing rendered onto a road-textured background. We see a self-driving Chrysler Pacifica at medium resolution and a simple wireframe box indicating the presence of another vehicle.

Months ago, a self-driving car team encountered a roundabout like this in Texas. The speed and complexity of the situation flummoxed the car, so they decided to build a look-alike strip of physical pavement at a test facility. And what I’m looking at is the third step in the learning process: the digitization of the real-world driving. Here, a single real-world driving maneuver—like one car cutting off the other on a roundabout—can be amplified into thousands of simulated scenarios that probe the edges of the car’s capabilities.

Scenarios like this form the base for the company’s powerful simulation apparatus. “The vast majority of work done—new feature work—is motivated by stuff seen in simulation,” Stout tells me. This is the tool that’s accelerated the development of autonomous vehicles at Waymo, which Alphabet (née Google) spun out of its “moon-shot” research wing, X, in December of 2016.

If Waymo can deliver fully autonomous vehicles in the next few years, Carcraft should be remembered as a virtual world that had an outsized role in reshaping the actual world on which it is based.

Originally developed as a way to “play back” scenes that the cars experienced while driving on public roads, Carcraft, and simulation generally, have taken on an ever-larger role within the self-driving program.

At any time, there are now 25,000 virtual self-driving cars making their way through fully modeled versions of Austin, Mountain View, and Phoenix, as well as test-track scenarios. Waymo might simulate driving down a particularly tricky road hundreds of thousands of times in a single day. Collectively, they now drive 8 million miles per day in the virtual world. In 2016, they logged 2.5 billion virtual miles versus a little over 3 million miles by Google’s IRL self-driving cars that run on public roads. And crucially, the virtual miles focus on what Waymo people invariably call “interesting” miles in which they might learn something new. These are not boring highway commuter miles.

Waymo has never unveiled this system before. The miles they drive on regular roads show them areas where they need extra practice. They carve the spaces they need into the earth at Castle, which lets them run thousands of different scenarios in situ. And in both kinds of real-world testing, their cars capture enough data to create full digital recreations at any point in the future. In that virtual space, they can unhitch from the limits of real life and create thousands of variations of any single scenario, and then run a digital car through all of them. As the driving software improves, it’s downloaded back into the physical cars, which can drive more and harder miles, and the loop begins again.

To get to Castle, you drive east from San Francisco Bay and south on 99, the Central Valley highway that runs south to Fresno. Cornfields abut subdevelopments; the horizon disappears behind agricultural haze. It’s 30 degrees hotter than San Francisco and so flat that the grade of this “earthen sea,” as John McPhee called it, can only be measured with lasers. You exit near the small town of Atwater, once the home of the Castle Air Force Base, which used to employ 6,000 people to service the B-52 program. Now, it’s on the northern edge of the small Merced metro area, where unemployment broke 20 percent in the early 2010s, and still rarely dips below 10 percent. Forty percent of the people around here speak Spanish. We cross some railroad tracks and swing onto the 1,621 acres of the old base, which now hosts everything from Merced County Animal Control to the U.S. Penitentiary, Atwater.

The directions in my phone are not pointed to an address, but a set of GPS coordinates. We proceed along a tall opaque green fence until Google Maps tells us to stop. There’s nothing to indicate that there’s even a gate. It just looks like another section of fence, but my Waymo host is confident. And sure enough: A security guard appears and slips out a widening crack in the fence to check our credentials.

The fence parts and we drive into a bustling little campus. Young people in shorts and hats walk to and fro. There are portable buildings, domed garages, and—in the parking lot of the main building—self-driving cars. This is a place where there are several types of autonomous vehicle: the Lexus models that you’re most likely to see on public roads, the Priuses that they’ve retired, and the new Chrysler Pacifica minivans.

The self-driving cars are easy to pick out. They’re studded with sensors. The most prominent are the laser scanners (usually called LIDARs) on the tops of the cars. But the Pacificas also have smaller beer-can-sized LIDARs spinning near their side mirrors. And they have radars at the back which look disturbingly like white Shrek ears.

When a car’s sensors are engaged, even while parked, the spinning LIDARs make an odd sound. It’s somewhere between a whine and a whomp, unpleasant only because it’s so novel that my ears can’t filter it out like the rest of the car noises that I’ve grown up with.

There is one even more special car parked across the street from the main building. All over it, there are X’s of different sizes applied in red duct tape. That’s the Level Four car. The levels are Society of Automotive Engineers designationsfor the amount of autonomy that the car has. Most of what we hear about on the roads is Level One or Level Two, meant to allow for smart cruise control on highways. But the red-X car is a whole other animal. Not only is it fully autonomous, but it cannot be driven by the humans inside it, so they don’t want to get it mixed up with their other cars.

As we pull into the parking lot, there are whiffs of Manhattan Project, of scientific outpost, of tech startup. Inside the main building, a classroom-sized portable, I meet the motive force behind this remarkable place. Her name is Steph Villegas.

Villegas wears a long, fitted white collared shirt, artfully torn jeans, and gray knit sneakers, every bit as fashionable as her pre-Google job at the San Francisco boutique Azalea might suggest. She grew up in the East Bay suburbs on the other side of the hills from Berkeley and was a fine-arts major at University of California, Berkeley before finding her way into the self-driving car program in 2011.

“You were a driver?” I ask.

“Always a driver,” Villegas says.

She spent countless hours going up and down 101 and 280, the highways that lead between San Francisco and Mountain View. Like the rest of the drivers, she came to develop a feel for how the cars performed on the open road. And this came to be seen as an important kind of knowledge within the self-driving program. They developed an intuition about what might be hard for the cars. “Doing some testing on newer software and having a bit of tenure on the team, I began to think about ways that we could potentially challenge the system,” she tells me.

So, Villegas and some engineers began to cook up and stage rare scenarios that might allow them to test new behaviors in a controlled way. They started to commandeer the parking lot across from Shoreline Amphitheater, stationing people at all the entrances to make sure only approved Googlers were there.

“That’s where it started,” she says. “It was me and a few drivers every week. We’d come up with a group of things that we wanted to test, get our supplies in a truck, and drive the truck down to the lot and run the tests.”

These became the first structured tests in the self-driving program. It turns out that the hard part is not really the what-if-a-zombie-is-eating-a-person-in-the-road scenarios people dream up, but proceeding confidently and reliably like a human driver within the endless variation of normal traffic.

Villegas started gathering props from wherever she could find them: dummies, cones, fake plants, kids’ toys, skateboards, tricycles, dolls, balls, doodads. All of them went into the prop stash. (Eventually, the props were stored in a tent, and now at Castle, in a whole storage unit.)

But there were problems. They wanted to drive faster and use streetlights and stop signs. And the concert season at Shoreline Amphitheater regularly threw kinks in their plans. “It was like, ‘Well, Metallica is coming, so we’re gonna have to hit the road,’” she says.

They needed a base, a secret base. And that’s what Castle provided. They signed a lease and started to build out their dream fake city. “We made conscious decisions in designing to make residential streets, expressway-style streets, cul-de-sacs, parking lots, things like that,” she says, “so we’d have a representative concentration of features that we could drive around.”

We pass by a cluster of pinkish buildings, the old military dormitories, one of which has been renovated: That’s where the Waymo people sleep when they can’t make it back to the Bay. Other than that, there are no buildings in the testing area. It is truly a city for robotic cars: All that matters is what’s on and directly abutting the asphalt.

As a human, it feels like a video-game level without the non-player characters. It’s uncanny to pass from boulevards to neighborhood-ish streets with cement driveways to suburban intersections, minus the buildings we associate with these places. I keep catching glimpses of roads I feel like I’ve traveled.

We pull up to a large, two-lane roundabout. In the center, there is a circle of white fencing. “This roundabout was specifically installed after we experienced a multilane roundabout in Austin, Texas,” Villegas says. “We initially had a single-lane roundabout and were like, ‘Oh, we’ve got it. We’ve got it covered.’ And then we encountered a multi-lane and were like, ‘Horse of a different color! Thanks, Texas.’ So, we installed this bad boy.”

We stop as Villegas gazes at one piece of the new addition: Two car lanes and a bike lane run past parallel parking abutting a grass patch. “I was really keen on installing something with parallel parking along it. Something like this happens in suburban downtowns. Walnut Creek. Mountain View. Palo Alto,” she says. “People are coming out of storefronts or a park. People are walking between cars, maybe crossing the street carrying stuff.” The lane was like a shard of her own memory that she’s embedded in the earth in asphalt and concrete, which will make its way into a more abstract form, an improved ability for a robot to handle her home terrain.
She drives me back to the main office and we hop into a self-driving van, one of the Chrysler Pacificas. Our “left-seat” driver is Brandon Cain. His “right-seat” co-driver in the passenger seat will track the car’s performance on a laptop using software called XView.

And then there are the test assistants, who they call “foxes,” a sobriquet that evolved from the word “faux.” They drive cars, create traffic, act as pedestrians, ride bikes, hold stop signs. They are actors, more or less, whose audience is the car.

The first test we’re gonna do is a “simple pass and cut-in,” but at high speed, which in this context means 45 miles per hour. We set up going straight on a wide road they call Autobahn.

After the fox cuts us off, the Waymo car will brake and the team will check a key data point: our deceleration. They are trying to generate scenarios that cause the car to have to brake hard. How hard? Somewhere between a “rats, not gonna make the light” hard stop and “my armpits started involuntarily sweating and my phone flew onto the floor” really hard stop.

Let me say something ridiculous: This is not my first trip in a self-driving vehicle. In the past, I’ve taken two different autonomous rides: first, in one of the Lexus SUVs, which drove me through the streets of Mountain View, and second, in Google’s cute little Firefly, which bopped around the roof of a Google building. They were both unremarkable rides, which was the point.

But, this is different. These are two fast-moving cars, one of which is supposed to cut us off with a move that will be, to use the Waymo term of art, “spicy.”

It’s time to go. Cain gets us moving and with a little chime, the car says, “Autodriving.” The other car approaches and cuts us off like a Porsche driver trying to beat us to an exit. We brake hard and fast and smooth. I’m impressed.

Then they check the deceleration numbers and realize that we had not braked nearly hard enough. We have to do it again. And again. And again. The other car cuts us off at different angles and with different approaches. They call this getting “coverage.”

Two cars merging at high speed, one driving itself (Alexis Madrigal) 

We go through three other tests: high-speed merges, encountering a car that’s backing out of a driveway while a third blocks the autonomous vehicle’s view, and smoothly rolling to a stop when pedestrians toss a basketball into our path. Each is impressive in its own way, but that cut-off test is the one that sticks with me.

As we line up for another run, Cain shifts in his seat. “Have you ever seen Pacific Rim?” Cain asks me. You know the Guillermo del Toro movie where the guys get synced up with huge robot suits to battle monsters. “I’m trying to get in sync with the car. We share some thoughts.”

I ask Cain to explain what he actually means by syncing with the car. “I’m trying to adjust to the weight difference of people in the car,” he says. “Being in the car a lot, I can feel what the car is doing—it sounds weird, but—with my butt. I kinda know what it wants to do.”

Far from the haze and heat of Castle, there is Google’s comfy headquarters in Mountain View. I’ve come to visit Waymo’s engineers, who are technically housed inside X, which you may know as Google X, the long-term, high-risk research wing of the company. In 2015, when Google restructured itself into a conglomerate called Alphabet, X dropped the Google from its name (their website is literally X.company). A year after the big restructuring, X/Alphabet decided to “graduate” the autonomous vehicle program into its own company as it had done with several other projects before, and that company is Waymo. Waymo is like Google’s child, once removed, or something.

So, Waymo’s offices are still inside the mother ship, though, like two cliques slowly sorting themselves out, the Waymo people all sit together now, I’m told.

The X/Waymo building is large and airy. There are prototypes of Project Wing’s flying drones hanging around. I catch a bit of the cute little Firefly car the company built. (“There’s something sweet about something you build yourself,” Villegas had said back at Castle. “But they had no A/C, so I don’t miss them.”)

Up from the cafeteria, tucked in a corner of a wing, is the Waymo simulation cluster. Here, everyone seems to have Carcraft and XView on their screens. Polygons on black backgrounds abound. These are the people creating the virtual worlds that Waymo’s cars drive through.

What it looked like to a Waymo car’s laser scanner when four people were pushing a car (Waymo)

Waiting for me is James Stout, Carcraft’s creator. He’s never gotten to speak publicly about his project and his enthusiasm spills out. Carcraft is his child.

“I was just browsing through job posts and I saw that the self-driving car team was hiring,” he says. “I couldn’t believe that they just had a job posting up.” He got on the team and immediately started building the tool that now powers 8 million virtual miles per day.

Back then, they primarily used the tool to see what their cars would have done in tricky situations in which human drivers have taken over control of the car. And they started making scenarios from these moments. “It quickly became clear that this was a really useful thing and we could build a lot out of this,” Stout says. The spatial extent of Carcraft’s capabilities grew to include whole cities, the number of cars grew into a huge virtual fleet.

Stout brings in Elena Kolarov, the head of what they call their “scenario maintenance” team to run the controls. She’s got two screens in front of her. On the right, she has up XView, the screen that shows what the car is “seeing.” The car uses cameras, radar, and laser scanning to identify objects in its field of view—and it represents them in the software as little wireframe shapes, outlines of the real world.

Green lines run out from the shapes to show the possible ways the car anticipates the objects could move. At the bottom, there is an image strip that displays what the regular (i.e., visible-light) cameras on the car captured. Kolarov can also turn on the data returned by the laser scanner (LIDAR), which is displayed in orange and purple points.

We see a playback of a real merge on the roundabout at Castle. Kolarov switches into a simulated version. It looks the same, but it’s no longer a data log but a new situation the car has to solve. The only difference is that at the top of the XView screen it says “Simulation” in big red letters. Stout says that they had to add that in because people were confusing simulation for reality.

They load up another scenario. This one is in Phoenix. Kolarov zooms out to show the model they have of the city. For the whole place, they’ve got “where all the lanes are, which lanes lead into other lanes, where stop signs are, where traffic lights are, where curbs are, where the center of the lane is, sort of everything you need to know,” Stout says.
We zoom back in on a single four-way stop somewhere near Phoenix. Then Kolarov starts dropping in synthetic cars and pedestrians and cyclists.
With a hot key press, the objects on the screen begin to move. Cars act like cars, driving in their lanes, turning. Cyclists act like cyclists. Their logic has been modeled from the millions of miles of public-road driving the team has done. Underneath it all, there is that hyper-detailed map of the world and models for the physics of the different agents in the scene. They have modeled both the rubber and the road.
Not surprisingly, the hardest thing to simulate is the behavior of the other people. It’s like the old parental saw: “I’m not worried about you driving. I’m worried about the other people on the road.”
“Our cars see the world. They understand the world. And then for anything that is a dynamic actor in the environment—a car, a pedestrian, a cyclist, a motorcycle—our cars understand intent. It’s not enough to just track a thing through a space. You have to understand what it is doing,” Dmitri Dolgov, Waymo’s vice president of engineering, tells me. “This is a key problem in building a capable and safe self-driving car. And that sort of modeling, that sort of understanding of the behaviors of other participants in the world, is very similar to this task of modeling them in simulation.”

There is one key difference: In the real world, they have to take in fresh, real-time data about the environment and convert it into an understanding of the scene, which they then navigate. But now, after years of work on the program, they feel confident that they can do that because they’ve run “a bunch of tests that show that we can recognize a wide variety of pedestrians,” Stout says.

So, for most simulations, they skip that object-recognition step. Instead of feeding the car raw data it has to identify as a pedestrian, they simply tell the car: A pedestrian is here.

At the four-way stop, Kolarov is making things harder for the self-driving car. She hits V, a hot key for vehicle, and a new object appears in Carcraft. Then she mouses over to a drop-down menu on the righthand side, which has a bunch of different vehicle types, including my favorite: bird_squirrel.

The different objects can be told to follow the logic Waymo has modeled for them or the Carcraft scenario builder can program them to move in a precise way, in order to test specific behaviors. “There’s a nice spectrum between having control of a scenario and just dropping stuff in and letting them go,” Stout says.

Once they have the basic structure of a scenario, they can test all the important variations it contains. So, imagine, for a four-way stop, you might want to test the arrival times of the various cars and pedestrians and bicyclists, how long they stop for, how fast they are moving, and whatever else. They simply put in reasonable ranges for those values and then the software creates and runs all the combinations of those scenarios.

They call it “fuzzing,” and in this case, there are 800 scenarios generated by this four-way stop. It creates a beautiful, lacy chart—and engineers can go in and see how different combinations of variables change the path that the car would decide to take.

The problem really becomes analyzing all these scenarios and simulations to find the interesting data that can guide engineers to be able to drive better. The first step might just be: Does the car get stuck? If it does, that’s an interesting scenario to work on.

Here we see a video that shows exactly such a situation. It’s a complex four-way stop that occurred in real life in Mountain View. As the car went to make a left, a bicycle approached, causing the car to stop in the road. Engineers took that class of problem and reworked the software to yield correctly. What the video shows is the real situation and then the simulation running atop it. As the two situations diverge, you’ll see the simulated car keep driving and then a dashed box appear with the label “shadow_vehicle_pose.” That dashed box shows what happened in real life. To Waymo people, this is the clearest visualization of progress.

But they don’t just have to look for when the car gets stuck. They might want to look for too-long decision times or braking profiles outside the right range. Anything that engineers are working on learning or tuning, they will simulate looking for problems.
Both Stout and the Waymo software lead Dolgov stressed that there were three core facets to simulation. One, they drive a lot more miles than would be possible with a physical fleet—and experience is good. Two, those miles focus on the interesting and still-difficult interactions for the cars rather than boring miles. And three, the development cycles for the software can be much, much faster.

“That iteration cycle is tremendously important to us and all the work we’ve done on simulation allows us to shrink it dramatically,” Dolgov told me. “The cycle that would take us weeks in the early days of the program now is on the order of minutes.”

Well, I asked him, what about oil slicks on the road? Or blown tires, weird birds, sinkhole-sized potholes, general craziness. Did they simulate those? Dolgov was sanguine. He said, sure, they could, but “how high do you push the fidelity of the simulator along that axis? Maybe some of those problems you get better value or you get confirmation of your simulator by running a bunch of tests in the physical world.” (See: Castle.)

The power of the virtual worlds of Carcraft is not that they are a beautiful, perfect, photorealistic renderings of the real world. The power is that they mirror the real world in the ways that are significant to the self-driving car and allow it to get billions more miles than physical testing would allow. For the driving software running the simulation, it is not like making decisions out there in the real world. It is the same as making decisions out there in the real world.

And it’s working. The California DMV requires that companies report the miles that they’ve driven autonomously each year along with disengagements that test drivers make. Not only has Waymo driven three orders of magnitude more miles than anyone else, but their number of disengagements have fallen quickly.

Waymo drove 635,868 autonomous miles from December 2015 to November 2016. In all those miles, they only disengaged 124 times, for an average of about once every 5,000 miles, or 0.20 disengagements per 1,000 miles. The previous year, they drove 424,331 autonomous miles and had 272 disengagements, for an average of once every 890 miles, or 0.80 disengagements per 1,000 miles.

While everyone takes pains to note that these are not exactly apples-to-apples numbers, let’s be real here: These are the best comparisons we’ve got and in California, at least, everybody else drove about 20,000 miles. Combined.

The tack that Waymo has taken is not surprising to outside experts. “Right now, you can almost measure the sophistication of an autonomy team—a drone team, a car team—by how seriously they take simulation,” said Chris Dixon, a venture capitalist at Andreessen Horowitz who led the firm’s investment in the simulation company Improbable. “And Waymo is at the very top, the most sophisticated.”

I asked Allstate Insurance’s head of innovation, Sunil Chintakindi, about Waymo’s program. “Without a robust simulation infrastructure, there is no way you can build [higher levels of autonomy into vehicles].” he said. “And I would not engage in conversation with anyone who thinks otherwise.”

Other self-driving car researchers are also pursuing similar paths. Huei Peng is the director of Mcity, the University of Michigan’s autonomous- and connected- vehicle lab. Peng said that any system that works for self driving cars will be “a combination of more than 99 percent simulation plus some carefully designed structured testing plus some on-road testing.”

He and a graduate student proposed a system for interweaving road miles with simulation to rapidly accelerate testing. It’s not unlike what Waymo has executed. “So what we are arguing is just cut off the boring part of driving and focus on the interesting part,” Peng said. “And that can let you accelerate hundreds of times: A thousand miles becomes a million miles.”

What is surprising is the scale, organization, and intensity of Waymo’s project. I described the structured testing that Google had done to Peng, including the 20,000 scenarios that had made it into simulation from the structured testing team at Castle. But he misheard me and began to say, “Those 2,000 scenarios are impressive,”—when I cut in and corrected him—“It was 20,000 scenarios.” He paused. “20,000,” he said, thinking it over. “That’s impressive.”

And in reality, those 20,000 scenarios only represent a fraction of the total scenarios that Waymo has tested. They’re just what’s been created from structured tests. They have even more scenarios than that derived from public driving and imagination.

“They are doing really well,” Peng said. “They are far ahead of everyone else in terms of Level Four,” using the jargon shorthand for full autonomy in a car.

But Peng also presented the position of the traditional automakers. He said that they are trying to do something fundamentally different. Instead of aiming for the full autonomy moon shot, they are trying to add driver-assistance technologies, “make a little money,” and then step forward toward full autonomy. It’s not fair to compare Waymo, which has the resources and corporate freedom to put a $70,000 laser range finder on top of a car, with an automaker like Chevy that might see $40,000 as its price ceiling for mass-market adoption.

“GM, Ford, Toyota, and others are saying ‘Let me reduce the number of crashes and fatalities and increase safety for the mass market.’ Their target is totally different,” Peng said. “We need to think about the millions of vehicles, not just a few thousand.”

And even just within the race for full autonomy, Waymo now has more challengers than it used to, Tesla in particular. Chris Gerdes is the director of the Center for Automotive Research at Stanford. Eighteen months ago, he told my colleague Adrienne LaFrance that Waymo “has much greater insight into the depth of the problems and how close we are [to solving them] than anyone else.” When I asked him last week if he still thought that was true, he said that “a lot has changed.”

“Auto manufacturers such as Ford and GM have deployed their own vehicles and built on-road data sets,” he said. “Tesla has now amassed an extraordinary amount of data from Autopilot deployment, learning how the system operates in exactly the conditions its customers experience. Their ability to test algorithms on board in a silent mode and their rapidly expanding base of vehicles combine to form an amazing testbed.”

In the realm of simulation, Gerdes said that he had seen multiple competitors with substantial programs. “I am sure there is quite a range of simulation capabilities but I have seen a number of things that look solid,” he said. “Waymo no longer looks so unique in this respect. They certainly jumped out to an early lead but there are now a lot of groups looking at similar approaches. So it is now more of a question of who can do this best.”

This is not a low-stakes demonstration of a neural network’s “brain-like” capacities. This is making a massive leap forward in artificial intelligence, even for a company inside Alphabet, which has been aggressive in adopting AI. This is not Google Photos, where a mistake doesn’t mean much. This is a system that will live and interact in the human world completely autonomously. It will understand our rules, communicate its desires, be legible to our eyes and minds.

Waymo seems like it has driving as a technical skill—the speed and direction parts of it—down. It is driving as a human social activity that they’re working on now. What is it to drive “normally,” not just “legally”? And how does one teach an artificial intelligence what that means?

It turns out that building this kind of artificial intelligence does not simply require endless data and engineering prowess. Those are necessary, but not sufficient. Instead, building this AI requires humans to sync with the cars, understanding the world as they do. As much as anyone can, the drivers out at Castle know what it is to be one of these cars, to see and make decisions like them. Maybe that goes both ways, too: The deeper humans understand the cars, the deeper the cars understand humans.

A memory of a roundabout in Austin becomes a piece of Castle becomes a self-driving car data log becomes a Carcraft scenario becomes a web of simulations becomes new software that finally heads back out on a physical self-driving car to that roundabout in Texas.

Even within the polygon abstraction of the simulation the AI uses to know the world, there are traces of human dreams, fragments of recollections, feelings of drivers. And these components are not mistakes or a human stain to be scrubbed off, but necessary pieces of the system that could revolutionize transportation, cities, and damn near everything else.

Merced County is developing a 2,000-acre auto tech center for Silicon Valley’s self-driving cars

Jul 31, 2017
by Jody Meacham
Silicon Valley Business Journal.

Merced County is in the process of developing a 2,000-acre site encompassing the former Castle Air Force Base, which it hopes will become the center for testing, development and manufacturing of automotive technology, including for many of the self-driving cars being developed in Silicon Valley.

Adam Wasserman, managing partner of Scottsdale, Arizona-based GLDPartners, which consults with international companies on optimizing their supply chains, said the project expects to announce its first tenant — likely linked to Silicon Valley’s R&D efforts on autonomous driving R&D — by early fall.

Google is already using a site adjacent to Merced County’s planned Mid-California AutoTech Testing, Development and Production Campus for its self-driving car testing. (photo courtesy of Google Inc).

Google is already using a 91-acre site for its own autonomous car testing program adjacent to the planned Mid-California AutoTech Testing, Development and Production Campus, county officials said.

At full build-out, the development plan calls for 8 million square feet of industrial space employing about 9,300 people.

“It just puts us on that technology map that everybody in Silicon Valley is enjoying,” said Daron McDaniel, chair of the county’s board of supervisors.

Merced County hired GLDPartners after several failed attempts to commercialize the Castle property, which it took ownership of in 2006 following the air base’s 1995 closure.

The county’s median family income was about $43,000 in 2016, about 80 percent of the national median, and about a quarter of its 262,000 residents live below the poverty line, according to census figures.

Before settling on auto technology, the company researched several other business sectors including food production, medical products, commercial space systems, industrial machines and specialty chemicals based on how they might fit in those sectors’ supply chains.

“The project takes advantage of the dire lack of testing facilities anywhere in the country, much less in California, where much of the research that is shaping the global auto industry is now taking place,” Wasserman wrote in an email.

The site works because of the concentration of international auto tech research in Silicon Valley, the proximity of Bay Area universities and 13-year-old UC Merced, which is forecast to double its enrollment to 14,000 students within three years and already has solar energy and drone facilities at Castle.

That is coupled with transportation infrastructure including an airfield capable of handling the largest cargo planes and two major railroads connected to ports in Stockton and Oakland so that the site can handle manufacturing as well as testing.

The county is securing $200 million to connect the site to State Route 99 by a road to be called the Atwater-Merced Expressway.

“We strongly believe — and it’s obviously been evidenced by Google and the work they do onsite with their autonomous vehicle program — we’re going to be incredibly competitive in the auto tech sector,” said Mark Hendrickson, the county’s economic development director.

Part of the site was originally pitched by the county to California high-speed rail officials for the system’s heavy maintenance facility, which is to be located in the San Joaquin Valley, but McDaniel said there has been no indication when they would make a decision.

“If high-speed rail wants us they need to pull the trigger right away,” he said.

Join the conversation: Follow @SVbizjournal on Twitter, “Like” us on Facebook and sign up for our free email newsletters.

 

Google set to lease Castle site for self-driving car program

By Victor Patton and Ramona Giwargis

 

Surfing Ranch could open soon

Visalia Time-Delta

by John Lindt
 Aug. 4, 2017

Getting stoked over surf ranch

If you can plop down a critical US Navy base 120 miles from the ocean, why scratch your head when you hear about a 155-acre competitive surfing event center, a ”Surf Ranch” located near Lemoore?

That’s the vision of famed surfer Kelly Slater, who owns a permitted wave generation complex originally built on a man-made lake, 700 yards long and 70 yards wide, designed for water-skiing. With some major upgrades and tweaks to the wave generation options, Slater and his investors now plan to expand the operation year-round. It will be open 6 a.m. to 11 p.m., according to a new conditional use permit application filed with the county this summer.

The application says the ranch will be staffed with 50 employees, who will continue to do development of prototype wave generation systems.

The application also states the facility will offer recreational use and competitive surfing events with outdoor music and camping for visitors. They are asking for a permit to hold large events – attracting as many as 8,000 visitors for three-day events, six times a year.

Commercial building demand, prices on the rise throughout Central Valley

By Sim Risso
Business Journal Writer

July 7, 2017

 

STOCKTON — As the Central Valley gets deeper into 2017, things are trending positively for commercial real estate. Industry professionals are reporting low vacancy rates, high demand leading to an increase in leasing rates and construction on new buildings ramping up to meet that demand.

Jim Martin, Senior Vice President of Lee and Associates Central Valley Inc. has been working the local commercial real estate market for 21 years, specializing in industrial real estate. During that time, Martin has seen ups and downs in the market, but he said the current market is one of the stronger ones he can recall.

“On the industrial side, I’d characterize the demand similar to what we saw in 2006 and 2007,” Martin said. “But I would say that what we haven’t seen, which we saw in that cycle, is an over flow of supply in terms of new construction starts.”

According to a report from commercial real estate services firm CBRE, there was one commercial construction building completed in the first quarter of 2017. It was a project in Tracy totaling 381,600 square feet.

While the building in Tracy was the only one completed in the first quarter of 2017, there are nine buildings under construction totaling 3.5 million square feet. Six or seven of those projects should be completed during the second quarter of 2017.

However, filling those buildings with tenants shouldn’t be too difficult. The vacancy rate in the first quarter of 2017 was only 2.2 percent.

Brian Peterson is First Vice President for CBRE and covers the office real estate market in the Central Valley. Peterson said he expects to see more projects in the future, but the approach will be measured due to a lack of available, entitled land and developers’ desires to have the building occupied quickly.

“They’ll probably look to build in really strong submarkets or have it pre-leased to justify,” Peterson said. “I don’t think you’ll see spec-office building in the near term under construction to put a major chunk of space on the market. It’ll probably be something that can be absorbed pretty quickly after delivery.”

The CBRE report also cited an increase in the average asking Industrial lease rate. It increased 1 cent per square foot across the board to 40 cents overall.

Tom Davis, Senior Vice President for CBRE’s Central Valley Industrial Practice group, expects the price per square foot to continue to increase in the coming year.

“Rents and building prices are up compared to this time last year,” Davis said. “We expect further increases in the coming year. Almost all vacancies in the market are seeing activity.”
Peterson offered a similar prognostication in terms of office real estate.

“Office lease rates and sales prices are up year over year in most local submarkets,” Peterson said. “I don’t see any change to the trend and expect a moderate increase in pricing throughout 2017.”
There’s also been a trend where the submarkets of Tracy and Northwest Stockton are noticeably strong in the office market. Peterson said part of Tracy’s market could be influenced by the Bay Area, as well as a lack of supply driving up demand. In Northwest Stockton, the Brookside business park is in demand.

“Many buildings are fully leased or just have a couple suites available,” Peterson said. “And again, rents are going up. Each deal seems to be pushing our rates up a little higher than the last.”
Martin has noticed the same thing, with Stockton seeing an increase in demand on the industrial side.

“Historically, there’s always been a preference for Tracy, Lathrop and Manteca, given their proximity to the Bay Area. But as those markets have reached nearly full occupancy, Stockton has been the benefactor of that overflow in demand,” Martin said.

And there’s a diversity in industries driving the demand. On the office side, Peterson cited medical offices, government-related uses, financial and professional services.
Davis also mentioned a wide array of tenants are driving demand in his discipline.

“Tenant demand is very broad on the industrial side,” Davis said. “E-commerce, the electrical vehicle industry and just consumer staples, food and beverage, are the most active sectors.”
Between the demand on the limited supply currently available, the measured amount of construction adding an amount of supply to the market that can be absorbed, and the increase in price per square foot, the market is in a good place. The industry professionals expect it to keep trending that direction too.

“We’re in a healthy market,” Martin said. “Values are up, rents are up and supply is short. So there aren’t very many options, and we’re starting to get to a point now where more and more buildings that are available are getting multiple inquiries and in many cases multiple offers. We haven’t seen that for some time.”

U.S. home prices up 6.6 percent in May 

Central Valley Business Times
IRVINE 
July 5, 2017 

  •  Price appreciation outstripping income growth in many markets
  • Prices soaring in Central Valley
  • For renters and potential first-time homebuyers, it is not such a pretty picture

Home prices are up strongly both year over year and month over month with national prices increasing year over year by 6.6 percent from May, according to a new report Wednesday from real estate financial information company CoreLogic Inc. (NYSE: CLGX) of Irvine.On a month-over-month basis, home prices increased by 1.2 percent in May compared with April, according to the CoreLogic data.

Looking ahead, the CoreLogic “HPI Forecast” indicates that home prices will increase by 5.3 percent on a year-over-year basis by May 2018, and on a month-over-month basis home prices are expected to increase by 0.9 percent from May to June.

The CoreLogic HPI Forecast is a projection of home prices using the CoreLogic HPI and other economic variables. Values are derived from state-level forecasts by weighting indices according to the number of owner-occupied households for each state.

“The market remained robust with home sales and prices continuing to increase steadily in May,” says Frank Nothaft, chief economist for CoreLogic. “While the market is consistently generating home price growth, sales activity is being hindered by a lack of inventory across many markets. This tight inventory is also impacting the rental market where overall single-family rent inflation was 3.1 percent on a year-over-year basis in May of this year compared with May of last year. Rents in the affordable single-family rental segment (defined as properties with rents less than 75 percent of the regional median rent) increased 4.7 percent over the same time, well above the pace of overall inflation.”

“For current homeowners, the strong run-up in prices has boosted home equity and, in some cases, spending,” says Frank Martell, president and CEO of CoreLogic. “For renters and potential first-time homebuyers, it is not such a pretty picture. With price appreciation and rental inflation outstripping income growth, affordability is destined to become a bigger issue in most markets.”

Parts of the Central Valley are seeing price increases even greater than the national average. Here are CoreLogic’s reports for individual Valley markets:

Home Prices in Fresno Increase In Fresno, home prices, including distressed sales, increased by 6.9 percent in May compared with May 2016. On a month-over-month basis, home prices, including distressed sales, increased by 0.9 percent in May compared with April.

Home Prices in Stockton-Lodi Increase In Stockton-Lodi, home prices, including distressed sales, increased by 9.0 percent in May compared with May 2016. On a month-over-month basis, home prices, including distressed sales, increased by 2.1 percent in May compared with April.

Home Prices in Visalia-Porterville Increase In Visalia-Porterville, home prices, including distressed sales, increased by 5.5 percent in May compared with May 2016. On a month-over-month basis, home prices, including distressed sales, decreased by 0.4 percent in May compared with April.

Home Prices in Bakersfield Increase In Bakersfield, home prices, including distressed sales, increased by 4.9 percent in May compared with May 2016. On a month-over-month basis, home prices, including distressed sales, increased by 0.8 percent in May compared with April.

Home Prices in Metro Sacramento Increase In metropolitan Sacramento, home prices, including distressed sales, increased by 8.5 percent in May compared with May 2016. On a month-over-month basis, home prices, including distressed sales, increased by 0.8 percent in May compared with April

Home Prices in Modesto Increase In Modesto, home prices, including distressed sales, increased by 9.6 percent in May compared with May 2016. On a month-over-month basis, home prices, including distressed sales, increased by 1.3 percent in May compared with April. Home Prices in Merced Increase

Home Prices in Merced Increase In Merced, home prices, including distressed sales, increased by 11.6 percent in May compared with May 2016. On a month-over-month basis, home prices, including distressed sales, increased by 0.5 percent in May compared with April.

Home Prices in Madera Increase In Madera, home prices, including distressed sales, increased by 8.5 percent in May compared with May 2016. On a month-over-month basis, home prices, including distressed sales, increased by 0.5 percent in May compared with April.